選擇DC-DC模塊電源的重要性
一、為什么需要DC_DC模塊電源?
DC-DC隔離模塊電源主要應用于分布式電源系統中,用以對電源系統實現隔離降低噪聲、電壓轉換、穩壓和保護功能。使用DC-DC隔離模塊電源的四大作用如下:
其一,模塊電源采用隔離式設計,可以有效的隔離來自側設備帶來的共模干擾對系統的影響,使負載能夠穩定的工作。
其二,不同的負載需要不同的供電電壓,例如控制IC需要5V、3.3V、1.8V等;信號采集用的運放則需要±15V;繼電器則需要12V,24V。而母線電壓多為24V,因此需要進行電壓轉換。
其三,母線電壓在長距離傳輸過程中會存在線損,故到PCB板級時電壓較低,而負載需要穩定的電壓,因此需要寬壓輸入,穩壓輸出。
其四,電源需要在異常情況下,保護系統的負載和本身不壞。
那么,如何選擇DC-DC模塊電源?
二、如何選擇高可靠性的DC-DC模塊電源
1. 采用成熟的電源拓撲
電源模塊的設計盡量選用成熟的電源拓撲,這些拓撲已經經過時間的考驗,成熟可靠。例如1-2W的定壓輸入DC-DC電源模塊選擇Royer電路,而寬壓輸入系列則多選Flyback拓撲,部分Forward拓撲。
2. 全負載范圍內高效率
高效率意味著更低的功率損失和更低的溫升,可以有效提高可靠性。在實際應用中,電源都會選擇一定程度的降額設計,特別是在負載IC的功耗越來越低的今天,電源大部分時候都有可能在輕載情況下工作。因此,全負載范圍內高效率對于電源系統可靠性來說是非常關鍵的參數,但往往被電源廠商忽略。大部分廠商為了技術手冊上的參數吸引客戶,往往將滿載效率做到較高,但在5%-50%的負載情況下效率較低。
3. 極限溫度特性
電源模塊應用的地理區域非常寬廣,可能有熱帶的酷暑也有類似俄羅斯冬天的嚴寒。因此要求DC-DC模塊的工作溫度范圍要求為-40度~85度,如果在汽車BMS、高壓母線監測應用,則需要工作溫度為-40度~125度。
極限溫度試驗是能檢驗電源模塊可靠性的方法,例如高溫老化、高溫&低溫帶電工作性能測試、高低溫循環沖擊試驗和長時間高溫高濕測試等。正規的電源開發都會經過以上測試。因此,是否有此類測試設備也成為了判斷電源廠商是否為山寨廠商的依據。
4. 高隔離、低隔離電容
醫療產品要求極低的漏電流,電力電子產品需要原邊和次級之間盡量少寄生電容。這兩個行業有一個共性的需求,即要求盡量高的隔離耐壓,和盡量低的隔離電容,用以降低共模干擾對系統的影響。如果在醫療或電力電子應用,1-2W DC_DC建議選取隔離電容低于10pF左右的電源模塊,寬壓產品則盡量選取低于150pF的電源模塊。
5. EMC特性
EMC性能是電子系統正常、安全工作的保證,目前電子行業對產品的EMC性能都提出了很高的要求,我們經常遇到客戶抱怨因EMC處理不好導致系統的復位重啟甚至是早期失效,因此優良的EMC特性是電源模塊競爭力。
三、電源系統應用設計的可靠性
電源本身的可靠性固然重要,但是實際上,由于電源系統工作環境的復雜性,再可靠的電源如果沒有可靠的系統應用設計,終電源還是會失效。下面介紹幾種常見的電源系統應用設計的方法和注意事項。
2. 降額設計
眾所周知,降額設計可以有效提高電源工作壽命,但是負載過輕使用,電源的性能又無法工作在狀態。 例如,金升陽DC_DC模塊電源建議在負載范圍30%~80%內使用,此時各方面性能表現。
3. 合理外圍防護設計
電源模塊應用行業非常多,應用的環境要求也不近相同,因為其通用性設計,DC-DC模塊電源僅能滿足通用共性需求。因此當客戶的應用環境要求苛刻時,需要加適當的外圍電路來提升電源的可靠性。
單獨模塊只能通過EN50155 1.4倍輸入電壓Vin的1S測試,但因為體積原因沒有辦法通過RIA12的標準,通過添加外圍電路就能通過RIA12要求的3.5Vin/20mS的等測試要求。 因而合理的外圍電路設計可以使模塊滿足更高等級的技術規格,使之適應更惡劣的應用環境,提升電源模塊的可靠性。
4. 散熱設計
工業級的電源模塊的損壞大約有15%是因為散熱不良導致的,電源模塊是朝著小型化和集成化方向發展,但是很多應用場合電源是處于密閉的環境中連續工作的,如果積熱無法散出去,電源內部的器件可能因為超過熱應力而損壞。通常的散熱方式有自然風冷、散熱片散熱和加強制性散熱風扇等。熱設計的幾點經驗分享如下:
(1) 電源模塊的對流通風
對于依靠自然對流和熱輻射來散熱的電源模塊,周圍環境一定要便于對流通風,且周圍無大器件遮擋,便于空氣流通。
(2) 發熱器件的放置
如果系統中擁有多個發熱源例如多個電源模塊,相互之間應盡量遠離,避免相互之間熱輻射傳遞導致電源模塊過熱。
(3) 合理的PCB板設計
PCB板提供了一種散熱途徑,在設計時就要多考慮散熱途徑。例如加大主回路的銅皮面積,降低PCB板上元器件的密度等,改善模塊的散熱面積和散熱通道,可以使熱量盡快向上散發;如果將DC-DC模塊放在PCB的底部,則向上散發的熱量會被PCB阻擋,導致產品積熱無法散發出去。
(4) 更大封裝尺寸和散熱面積
同樣功率的電源,如果可能盡量選擇尺寸更大的封裝和散熱面更大的散熱器,或者使用導熱膠將電源模塊外殼與機殼連接。這樣電源模塊擁有更大的散熱面積,散熱會更快,內部的溫度會更低,電源的可靠性自然也就越高。
5. 匹配性設計、安規設計
電源的輸入走線盡量保持直線,避免形成環路天線吸引外界輻射干擾。同時輸入線和輸出線需要按照UL60950的安規要求保持合適的間距,避免耐壓失效。再者,電源底板下禁止布線,特別是信號線,電源變壓器的電磁線會對信號形成干擾。
另外一個設計師需注意的是,需要關注電源和二次電源之間,以及電源與系統工作頻率的倍頻錯開,避開相互之間的系統匹配性問題。
五、小結
DC_DC電源模塊的可靠應用需要電源原廠提供高品質電源,同時也需要設計工程師合理的應用設計,只有從設計和應用雙向考慮才能終獲得可靠的電源系統。